
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2022

1 Instructor: Daniel Llamocca
TAs: Michael Bowers, Abd Alrahman Al Nounou

Laboratory 6
(Due date: 011: November 29th, 005: November 30th, 007: December 1st)

OBJECTIVES
✓ Describe Finite State Machines (FSMs) in VHDL.
✓ Implement a Digital System: Control Unit and Datapath Unit.

VHDL CODING

✓ Refer to the Tutorial: VHDL for FPGAs for parametric code for: register, shift register, counter, adder/subtractor.

ITERATIVE DIVIDER IMPLEMENTATION (100/100)
▪ Given two unsigned numbers 𝐴 and 𝐵, we want to design a circuit that generates the quotient 𝑄 and a remainder 𝑅. 𝐴 =

𝐵 × 𝑄 + 𝑅. The algorithm that implements the traditional long-hand division is as follows:

▪ Based on the algorithm, an iterative architecture is presented for DA with 6 bits and DB with 4 bits. The register R stores the

remainder. A division operation is started when 𝑠 = 1 (where DA and DB values are captured). The signal done is asserted

to indicate that the operation has been completed and the result appears in Q and R.

✓ At every iteration, we update R by either: i) shifting in the next bit of 𝐴, or ii) shifting in the next bit of 𝐴 and subtracting

𝐵 from R. Also, 𝑞𝑖 (a bit of quotient 𝑄) is computed and shifted into register A.

00001111

10001100

1001

10001

1001

10000

1001

1110

1001

101

1001 AB

Q

R

ALGORITHM

R = 0

for i = n-1 downto 0

left shift R (input = ai)

if R B

qi = 1, R R-B

else

qi = 0

end

end

15

140

90

50

45

5

9 AB

R

Q

a5

5

LEFT SHIFT

REGISTER

s_L
E w REGISTER

E

DA DB

+cout

Q

B

LEFT SHIFT

REGISTER

sclr
s_L
E

w

46

4

5

'0'&B

R

4

A

a5

5

0

4

R
3
R
2
R
1
R
0
a
5

R3R2R1R0

s

FSM

sclrR
LR
ER

done

LA
B

E
A

46

cout

cout

4

X

sclrR 1, ER 1

EC 1, sclrC 1

S1

1

resetn=0

s
0

ER 1, EA 1

S2

done 1

S3

1
cout

0

0
zC EC 1

1

LAB, EA 1

LR 1

s
10

Q

clock

3

counter
0 to 5

zC

E

sclr

EC

resetn

T4T3T2T1T0

T3T2T1T0

HEX to 7
segments
decoder

7

cin 1

zC

C
A
-
C
G AN0=0

sclrC

C=5?

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2022

2 Instructor: Daniel Llamocca
TAs: Michael Bowers, Abd Alrahman Al Nounou

▪ The circuit includes two parallel access left shift registers, a 4-bit register, a modulo-6 counter, a 5-bit adder/subtractor

(addsub=0: add, addsub=1: subtract), and an FSM. Each sequential component has resetn and clock inputs.

✓ Modulo-6 counter: It includes: i) a synchronous input sclr that clears the count when E=sclr=1, and ii) an output zC that

is asserted when the count reaches 5. The counter increases its value when E=1, sclr=0. Note that 𝑄 is unused.

✓ Parallel Access Left-shift registers: Note that one of the shift registers includes a synchronous input 𝑠𝑐𝑙𝑟 that clears the

register outputs when E=sclr=1. Refer to Lecture Notes – Unit 6 for a description of the circuit and its operation.

▪ The circuit is an example of a Digital System: It includes a Control Circuit (FSM) and a Datapath Circuit. The Datapath Circuit

is made from combinational and sequential components. The circuit is also called a Special-Purpose Processor. In this case,
the special purpose is the unsigned division.

PROCEDURE

▪ Vivado: Complete the following steps:

✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device
for the Nexys A7-50T).

✓ Write the VHDL code for the given circuit. Synthesize your circuit to clear syntax errors and critical warnings.

 Use the Structural Description: Have a separate file for the modulo-6 counter, parallel access shift register with sclr,

register, adder/subtractor, Hex to 7-segment decoder, FSM, and top file.

 Suggestion: Use parametric code (set up the proper parameters with generic map) for these components:

 Parallel access shift registers with sclr: my_pashiftreg_sclr

* Note that one of these shift registers does not use the sclr input. In this case, that input should be tied to ‘0’.

 Counter: my_genpulse_sclr (include in the top file: use ieee.math_real.log2; use ieee.math_real.ceil;)

 Register with enable: my_rege

 Adder/subtractor: my_addsub

✓ Write the VHDL testbench (generate a 100 MHz input clock for your simulations) to test the following cases:

DA DB Q R CA-CG (complete!)

011011 (27) 1001 (9) 000011 0000

010100 (20) 0111 (7) 000010 0110

111110 (62) 1001 (9) 000110 1000

111001 (57) 0110 (6) 001001 0011

111011 (59) 1011 (11) 000101 0100

111101 (61) 1101 (13) 000100 1001

 The testbench should be written according to the timing diagram shown in the figure, where the first two values for

DA/DB are fed. Note that there are 6 + 2 = 8 cycles between data values.

✓ Perform Behavioral Simulation and Timing Simulation of your design. Demonstrate this to your TA.
 Behavioral Simulation: For proper debugging, add internal signals (e.g.: state, R, T) to the waveform view. Go to:

SCOPE window: testbench → UUT. Then go to Objects Window → Signal(s) → Add to Wave Window. Then, re-

run the simulation.

 Note that you can represent data as unsigned integers (use Radix → Unsigned Decimal).

 Your simulation might need more time than Vivado Simulator’s default (1us). For example, to add 5 us, you can
go to the TCL console and type: run 5 us.

000000 011011 010100 000000

clock

resetn

s

DA 000000

6+2 cycles

...

0000 1001 0111 000000DB 000000

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2022

3 Instructor: Daniel Llamocca
TAs: Michael Bowers, Abd Alrahman Al Nounou

 Debugging: If your circuit works as expected, the results appear on Q and R (when done=1) and they should match

those listed in the previous table.
 In the (likely) event that the results are incorrect, you need to perform cycle-accurate simulation for one operation:

if one operation is correct, most likely the other would be also correct:
 Manually complete the following timing diagram: it shows the detailed signal transitions for the first operation.
 Re-run the simulation (include all the internal signals into your window). Then, cycle by cycle, compare the

signal values until you find a mismatch. This will help you locate the source of the incorrect value(s).

 If you get the correct results for all operations, complete the timing diagram based on your Vivado simulation.

✓ I/O Assignment: Create the XDC file associated with your board.

 Suggestion (for Basys 3, use SW15 instead of CPU_RESETN for resetn input)

Board pin names CLK100MHZ CPU_RESETN BTNC SW9-SW4 SW3-SW0 LED15 LED5-LED0 CA-CG AN7-AN0

Signal names in code clock resetn s DA5-DA0 DB3-DB0 done Q5-Q0 CA-CG AN7-AN0

 The board pin names (except CPU_RESETN) are used by all the listed boards (Nexys A7-50T/A7-100T, Nexys 4/DDR,

Basys 3). I/Os: all switches and LEDs are active-high.
 Basys 3: There are only four 7-segment displays, hence you only have signals AN3-AN0.

 Note: synchronous circuits always require a clock and reset signal.

 Reset signal: As a convention in this class, we use active-low reset (resetn). As a result, ensure that resetn is tied

to the proper board resource:

 Nexys A7-50T/A7-100T, Nexys 4/DDR: For resetn, use CPU_RESETN pin. This is an active-low push button.

 Basys 3: There is no active low push button. Thus, for resetn, use SW15. Even though SW15 is active high, we

can still think of it as active-low resetn, where the circuit is reset when the switch position is OFF (‘0’).

 Clock signal: Like other signals in the XDC file, you need to uncomment the lines associated with the clock signal
and replace the signal label with name used in your code. In addition, there is parameter -period that is set by

default to 10.00. This is the period (in ns) that your circuit should support.

 Nexys A7-50T: In these lines, replace the label CLK100MHZ with the signal name you use in your code (clock):
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { CLK100MHZ }];

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CLK100MHZ}];

011011

clock

resetn

s

Q=A

DB

000000

R 0000

DA 000000000000

000

T 00000

S1

1001 00000000

010100

0111

EA

EC

QC

zC

cout

LR

ER

state

done

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2022

4 Instructor: Daniel Llamocca
TAs: Michael Bowers, Abd Alrahman Al Nounou

 Basis 3: In these lines, replace the label clk with the signal name used in your code (clock):
set_property PACKAGE_PIN W5 [get_ports clk]

set_property IOSTANDARD LVCMOS33 [get_ports clk]

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports clk]

✓ Generate and download the bitstream on the FPGA. Test the circuit (use the same input values as in the testbench).

Demonstrate this to your TA.

SUBMISSION
▪ Submit to Moodle (an assignment will be created):

✓ This lab sheet (as a .pdf) completed signed off by the TA (or instructor)
✓ (As a .zip file) all the generated files: VHDL code files, VHDL testbench,

and XDC file. DO NOT submit the whole Vivado Project.
 Your .zip file should only include one folder (the figure shows and

example). Do not include subdirectories.
 It is strongly recommended that all your design files, testbench, and

constraints file be located in a single directory. This will allow for a
smooth experience with Vivado.

 You should only submit your source files AFTER you have demoed
your work. Submission of work files without demoing will be assigned
NO CREDIT.

TA signature: ________________________________ Date: __________________________

lab6

top.vhd

lab6.xdc

top_tb.vhd

Design
files

Testbench file

Constraints file

my_pashiftreg_sclr.vhd

fa.vhd

my_addsub.vhd

my_genpulse_sclr.vhd

my_rege.vhd

hex2_7seg.vhd

my_fsm.vhd

	Objectives
	VHDL Coding

	Iterative Divider Implementation (100/100)
	Procedure

	Submission

